I Year - II Semester		L	T	P	C
		0	0	4	2
Machine Learning with Python Lab					

Course Objectives:

This course will enable students to

- To learn and understand different Data sets in implementing the machine learning algorithms.
- Implement the machine learning concepts and algorithms in any suitable language of choice.

Course Outcomes(COs): At the end of the course, student will be able to

- Implement procedures for the machine learning algorithms
- Design Python programs for various Learning algorithms
- Apply appropriate data sets to the Machine Learning algorithms
- Identify and apply Machine Learning algorithms to solve real world problems

Experiment-1:

Exercises to solve the real-world problems using the following machine learning methods:

- a) Linear Regression
- b) Logistic Regression.

Experiment-2:

Write a program to Implement Support Vector Machines.

Experiment-3:

Exploratory Data Analysis for Classification using Pandas and Matplotlib.

Experiment-4:

Implement a program for Bias, Variance, and Cross Validation.

Experiment-5:

Write a program to simulate a perception network for pattern classification and function approximation.

Experiment-6:

Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

Experiment-7:

Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets.

Experiment-8:

Write a program to implement the naïve Bayesian classifier for Iris data set. Compute the accuracy of the classifier, considering few test data sets.

Experiment-9:

Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.

Experiment-10:

Apply EM algorithm to cluster a Heart Disease Data Set. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.

Experiment-11:

Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set. Print both correct and wrong predictions.